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Consider the model
Yi = f(Xi) + ξi for i ∈ [n],

where f : [0, 1]→ R is an unknown function, Xi = i/n and ξi are i.i.d. standard Gaussian variables.
For β ∈ (0, 1] and L > 0, denote by Σ(β, L) the class of Hölder functions f satisfying

|f(x)− f(y)| ≤ L|x− y|β.

We are interested in adaptive estimation of a function f ∈ Σ(β, L) at a fixed point x when β is un-
known. For simplicity, we view L as a universal constant. In particular, we show that a logarithmic
gap exists between nonadaptive and adaptive minimax rates (i.e. Lepski’s phenomenon).

Both the method and the lower bounds appeared in [Lepskii, 1991].

1 Regressogram estimators and nonadaptive upper bounds

Let m be a positive integer and let h = 1/m. Partition [0, 1] into m intervals ∆j = ( j−1
m , jm ] where

j ∈ [m]. Define the regressogram estimator of function f as the piecewise constant function

f̂h(x) =
1

kj

n∑
i=1

Yi1(Xi ∈ ∆j) for x ∈ ∆j , j ∈ [m],

where kj =
∑n

i=1 1(Xi ∈ ∆j).

Theorem 1.1. Fix x ∈ [0, 1]. The estimator f̂h satisfies that

sup
f∈Σ(β,L)

P
[
|f̂h(x)− f(x)|2 & (nh)−1s+ h2β

]
≤ e−s, (1.1)

and that
sup

f∈Σ(β,L)
E|f̂h(x)− f(x)|2 . (nh)−1 + h2β.

In particular, if β is known and h = h∗β = n−1/(2β+1), then

sup
f∈Σ(β,L)

E|f̂h∗β (x)− f(x)|2 . n−2β/(2β+1).
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Proof. We use the bias-variance decomposition

f̂h(x)− f(x) =
1

kj

n∑
i=1

[
Yi − f(Xi) + f(Xi)− f(x)

]
1(Xi ∈ ∆j)

=
1

kj

n∑
i=1

ξi1(Xi ∈ ∆j) +
1

kj

n∑
i=1

[
f(Xi)− f(x)

]
1(Xi ∈ ∆j).

The variance term has distribution N(0, 1/kj) since it is an average of kj i.i.d. standard Gaussian
variables. To bound the bias term, note that |f(Xi)−f(x)| . hβ since f ∈ Σ(β, L) and |Xi−x| ≤ h.
Hence we have

|f̂h(x)− f(x)| . |g|+ hβ

where g ∼ N(0, 1/kj). Since kj ≈ nh, the results easily follow.

2 Lower bounds for one Hölder class

We want to show that the upper bounds we just derived are the best we can hope for. In particular,
we show

Theorem 2.1. Let
ψ(β) = n

− 2β
2β+1 . (2.1)

Then, there exists a constant c > 0 such that

inf
f̂

sup
f∈Σ(β,L)

E

[
1

ψ(β)
|f̂(x0)− f(x0)|2

]
≥ c, (2.2)

where the infimum ranges over all measurable functions f̂ on the data.

In order to do so, we reduce the problem to hypothesis testing.

2.1 General lower bound

Start by considering the worst case risk and lower bound it by only considering two candidate
functions,

R = sup
f∈Σ(β,L)

Ef [|f̂(x0)− f(x0)|2] (2.3)

≥ max
f∈{f1,f2}

Ef [|f̂(x0)− f(x0)|2] (2.4)

≥ 1

2

(
Ef1 [|f̂(x0)− f1(x0)|2] +Ef2 [|f̂(x0)− f2(x0)|2]

)
. (2.5)

Given any estimator f̂ , there is a natural associated test to decide between the two hypothesis

H0 : f = f1, H1 : f = f2, (2.6)

namely

T̂ =

{
1, |f̂(x0)− f1(x0)| ≤ |f̂(x0)− f2(x0)|
2, otherwise.
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By triangle inequality, and setting δ = |f1(x0)− f2(x0)|, we can conclude that

R ≥ δ2

8

(
Pf1(T̂ = 2) + Pf2(T̂ = 1)

)
(2.7)

for this specific choice of T̂ . Now, we forget about where T̂ came from and lower bound it by any
hypothesis test T̂ that is identified with its rejection set A = {T̂ = 2}.

We will lower bound Pf1(T̂ = 2) + Pf2(T̂ = 1) by the χ2 divergence between Pf1 and Pf2 . For
two distributions P and Q, set

χ2(P,Q) =

∫
(dP − dQ)2

dQ
=

∫ (
dP

dQ

)2

dQ− 1 (2.8)

We can check that if P =
∏
Pi, Q =

∏
Qi, then∫ (

dP

dQ

)2

dQ =

∫ (∏
dPi∏
dQi

)
d
∏

Qi (2.9)

=
∏∫ (

dPi
dQi

)2

dQi. (2.10)

Lemma 2.2 (Lemma 8 in [Collier et al., 2016]). Let P1, P2 be two probability measures on (X,U).
Then, for any q > 0,

inf
A∈U
{P1(Ac) + qP2(A)} ≥ sup

0<τ<1

{
qτ

1 + qτ
1− τ(χ2(P1, P2) + 1)

}
. (2.11)

Proof. We start by estimating the probability for a level set of the likelihood ratio.

P1

(
dP2

dP1
≥ τ

)
=

∫
1

{
dP2

dP1
≥ τ

}
dP1 (2.12)

= 1−
∫
1

{
dP2

dP1
< τ

}
dP1 (2.13)

= 1−
∫
dP1

dP2
1

{
dP1

dP2
>

1

τ

}
dP2 (2.14)

≥ 1− τ
∫ (

dP1

dP2

)2

dP2 (2.15)

= 1− τ(χ2(P1, P2) + 1)︸ ︷︷ ︸
=α

. (2.16)

Now, write

G =

{
dP2

dP1
≥ τ

}
Then,

P2(A) =

∫
dP2

dP1
1AdP1 ≥ τP1(A ∩G) ≥ τ(P1(A)− α). (2.17)
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Therefore,

P1(Ac) + qP2(A) ≥ max{P1(Ac), qP2(A)} (2.18)

≥ max{P1(Ac), qτ(P1(A)− α)} (2.19)

≥ inf
t∈[0,1]

max{1− t, qτ(t− α)} (2.20)

=
qτ

1 + qτ
(1− α) (2.21)

=
qτ

1 + qτ
(1− τ(χ2(P1, P2) + 1))

2.2 χ2 between Gaussians

It remains to control the χ2 divergence between two Gaussians For two Gaussians with variance
one, we have

dQ =
1√
2π

exp

(
−x

2

2

)
dP =

1√
2π

exp

(
−(x− µ)2

2

)
,

and consequently, completing the squares,

χ2(P,Q) + 1 =

∫ (
dP

dQ

)2

dQ =
1√
2π

∫
exp

(
−(x− µ)2 + x2 − x2

2

)
dx (2.22)

=
1√
2π

∫
exp

(
−x

2

2
+ 2µx− µ2

)
dx (2.23)

=
1√
2π

∫
exp

(
−(x− 2µ)2

2
+ µ2

)
dx (2.24)

= exp(µ2). (2.25)

2.3 Constructing hypotheses

(See [Korostelev and Korosteleva, 2011]) In our case, set

f1(x) = hβK

(
x− x0

h

)
, f2(x) ≡ 0, x ∈ [0, 1], (2.26)

for h to be chosen later, where

K(u) = cK0(2u), K0(u) = exp

(
− 1

1− u2

)
1{|u| ≤ 1} (2.27)

is a bump function Note that K(u) = 0 for |u| > 1/2 and K(u) ∈ Σ(β, L) if c is chosen small
enough (pictures).

By definition,

|f2(x0)− f1(x0)|2 = K(0)2h2β (2.28)
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By (2.25),

χ2(Pf1 , Pf2) + 1 = exp

(
n∑
i=1

f1(xi)
2

)
(2.29)

= exp

(
n∑
i=1

h2βK

(
xi − x0

h

)2

1{|xi − x0| ≤ h/2}

)
(2.30)

≤ exp
(
‖K‖2∞h2β+1n

)
, (2.31)

which we make an arbitrarily small constant if

h = cn
− 1

2β+1 ,

and therefore by (2.7) and Lemma 2.2 with q = 1, we have a lower bound with rate

R & n
− 2β

2β+1 . (2.32)

3 Lower bound for adaptivity

3.1 Lower bound for unbalanced rates

Now, assume that we want to attain the rates for two different Hlder classes Σ(β1, L) and Σ(β2, L),
0 < β1 < β2 ≤ 1 simultaneously with one estimator. We will show that this is not possible if we
insist on achieving the minimax rates. For the proof, we can actually proceed very similarly to the
above, except that we exploit that a function that is in Σ(β2, L) is simultaneously in Σ(β1, L) and
thus needs to be able to be estimated faster than what we were able to achieve with one estimator.

In particular, we will show

Theorem 3.1. Let 0 < β1 < a < β2 ≤ 1 and abbreviate

ψ1 =

(
log n

n

) 2β1
2β1+1

, ψ2 =

(
1

n

) 2a
2a+1

, (3.1)

Then, there is a constant c > 0 such that

inf
f̂

sup
i∈{1,2}

sup
f∈Σ(βi,L)

E

[
1

ψi
|f̂(x0)− f(x0)|2

]
≥ c, (3.2)

where the infimum ranges over all measurable functions f̂ on the data.

Corollary 3.2. (i) If f̂ is such that

sup
f∈Σ(β1,L)

E[|f̂(x0)− f(x0)|2] . n
− 2β1

2β1+1 , (3.3)

then

lim sup
n

sup
f∈Σ(β2,L)

n
2β2

2β2+1E[|f̂(x0)− f(x0)|2] =∞. (3.4)
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(ii) If f̂ is such that

sup
f∈Σ(β2,L)

E[|f̂(x0)− f(x0)|2] . n
− 2β2

2β2+1 , (3.5)

then

lim sup
n

sup
f∈Σ(β1,L)

n
2β1

2β1+1E[|f̂(x0)− f(x0)|2] =∞. (3.6)

Proof of Corollary 3.2. (i) Under (3.5), the supremum for i = 1 in (3.2) goes to zero, so the

supremum for i = 2 is bounded below by a constant. But lim supn
2β2

2β2+1ψ2 =∞.
(ii) Similary, the supremum for i = 1 will go to zero, so the supremum for i = 2 will be bounded

from below and is by a log factor worse than the minimax rate.

In the remainder, we will prove Theorem 3.1.
Start the same as in (2.3), but now introduce the two rates and assume that

|f2 − f1|2/ψ1 = δ. (3.7)

Setting

q =
ψ1

ψ2
(3.8)

yields

R = max{E1[|f̂ − f1|2/ψ1],E2[|f̂ − f2|2/ψ2]} (3.9)

≥ δ2

8

(
P1(T̂ = 2) + qP2(T̂ = 1)

)
. (3.10)

We will continue along the same lines as before and use Lemma 2.2.

3.2 Construct alternatives

From (3.1),

q = n
2a

2a+1
− 2β1

2β1+1 (log n)
− 2β1

2β1+1 & nc1 .

Define two alternatives very similar to (2.26),

f1(x) = hβ1K

(
x− x0

h

)
, f2(x) ≡ 0, x ∈ [0, 1]

Pick

h =

(
c log n

n

) 1
2β1+1

and note that f1 ∈ Σ(L, β1), f2 ∈ Σ(L, β2).
Then, by the same calculation as in (2.31),

χ2(P1, P2) + 1 ≤ exp(Cc log n) = nCc

So, if we pick c small enough, τ(χ2(P1, P2) + 1) & 1 and qτ & 1, so we get the result.
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4 Lepski’s method and adaptive upper bounds

Next, we discuss Lepski’s method which gives an adaptive estimator achieving a rate only slower
than the nonadaptive minimax rate by a logarithmic factor. Suppose there is an unknown β ∈
[βmin, βmax] ⊂ (0, 1]. Choose a discrete subset

B = {βmin = β1 < β2 < · · · < βN = βmax}

where βj − βj−1 � 1/ log n, and set

hβ = (n/ log n)−1/(2β+1) and ψn(β) = h2β
β = (n/ log n)−2β/(2β+1).

Lepski’s estimator is defined as
f̂∗(x) = f̂β̂(x),

where
β̂ = max

{
β ∈ B : |f̂hβ (x)− f̂hβ′ (x)| ≤ c0h

β′

β′ for all β′ ≤ β, β′ ∈ B
}
.

Theorem 4.1. Fix x ∈ [0, 1]. The estimator f̂∗ satisfies that

sup
βmin≤β≤βmax

sup
f∈Σ(β,L)

E
[
|f̂∗(x)− f(x)|2/ψn(β)

]
≤ C0,

where C0 is a universal constant.

Proof. First, we claim that it suffices to consider β ∈ B. Indeed, if β ∈ (βj−1, βj), then f ∈
Σ(β, L) ⊂ Σ(βj−1, L). Thus we just need to show that ψn(βj−1) � ψn(βj) (as ψn(β) is squeezed in
between). By the definition of ψn(β) and that βj − βj−1 � 1/ log n, we obtain

log
ψn(βj−1)

ψn(βj)
= log

( n

log n

) −2βj−1
2βj−1+1

+
2βj

2βj+1
=
( −2βj−1

2βj−1 + 1
+

2βj
2βj + 1

)
log

n

log n
� (βj − βj−1) log n � 1,

so the claim follows.
Now fix f ∈ Σ(βi, L) where i ∈ [N ]. Let Ej be the event that β̂ = βj . We have

E
[
|f̂∗(x)− f(x)|2/ψn(βi)

]
=

N∑
j=1

E
[
|f̂hβj (x)− f(x)|2ψn(βi)

−1
1(Ej)

]
. (4.1)

For j ≥ i, on the event Ej , it holds that

|f̂hβj (x)− f̂hβi (x)| ≤ c0h
βi
βi
, or equivalently |f̂hβj (x)− f̂hβi (x)|2/ψn(βi) ≤ c2

0, (4.2)

by the definition of the estimator. Hence

N∑
j=i

E
[
|f̂hβj (x)− f(x)|2ψn(βi)

−1
1(Ej)

]
≤

N∑
j=i

(
2c2

0E
[
1(Ej)

]
+ 2E

[
|f̂hβi (x)− f(x)|2ψn(βi)

−1
1(Ej)

])
= 2c2

0 + 2E
[
|f̂hβi (x)− f(x)|2ψn(βi)

−1
]
≤ C0, (4.3)

where the last inequality follows from Theorem 1.1.
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Next, we consider j < i. It holds that

E
[
|f̂hβj (x)− f(x)|2ψn(βi)

−1
1(Ej)

]
=

∫ ∞
0
P

[
|f̂hβj (x)− f(x)|2ψn(βi)

−1
1(Ej) ≥ t

]
dt

≤ tjP[Ej ] +

∫ ∞
tj

P

[
|f̂hβj (x)− f(x)|2/ψn(βi) ≥ t

]
dt. (4.4)

On the event Ej , the definition of the estimator implies that there exists β′ ∈ B with β′ < βi

such that |f̂hβi (x) − f̂hβ′ (x)| > c0h
β′

β′ , i.e. |f̂hβi (x) − f̂hβ′ (x)|2/ψn(β′) > c2
0. Hence we have either

|f̂hβi (x)− f(x)|2/ψn(β′) > c2
0/4 or |f̂hβ′ (x)− f(x)|2/ψn(β′) > c2

0/4. Thus

P[Ej ] ≤
i−1∑
`=1

(
P
[
|f̂hβi (x)− f̂(x)|2/ψn(β`) > c2

0/4
]

+P
[
|f̂hβ` (x)− f(x)|2/ψn(β`) > c2

0/4
])
. (4.5)

Note that f ∈ Σ(βi, L) ⊂ Σ(β`, L) for all ` ≤ i. Thus it follows from (1.1) that for all s ≥ log n and
some constant C > 0,

Pf

[
|f̂hβ` (x)− f(x)|2/ψn(β`) ≥ Cs/ log n

]
≤ e−s. (4.6)

Hence we have that if c0 ≥ 2
√
C then

P
[
|f̂hβ` (x)− f(x)|2/ψn(β`) ≥ c2

0/4
]
≤ exp

(
− c2

0

4C
log n

)
,

and

P
[
|f̂hβi (x)− f(x)|2/ψn(β`) ≥ c2

0/4
]
≤ P

[
|f̂hβi (x)− f(x)|2/ψn(βi) ≥ c2

0/4
]
≤ exp

(
− c2

0

4C
log n

)
.

Choosing c0 to be sufficiently large and plugging the above two bounds into (4.5), we obtain that

P[Ej ] ≤ n−c
2
0/(8C).

On the other hand, it follows from (4.6) that for t ≥ Cψn(βj)/ψn(βi),

P
[
|f̂hβj − f(x)|2/ψn(βi) ≥ t

]
= P

[
|f̂hβj − f(x)|2/ψn(βj) ≥ t ψn(βi)/ψn(βj)

]
≤ exp

(
− t log n

C

ψn(βi)

ψn(βj)

)
.

Therefore, taking tj = c1ψn(βj)/ψn(βi) in (4.4) where c1 is a sufficiently large constant and applying
the above two bounds, we see that (4.4) is bounded by

tjn
−c20/(8C) +

∫ ∞
tj

exp
(
− t log n

C

ψn(βi)

ψn(βj)

)
dt =

c1ψn(βj)

ψn(βi)
n−c

2
0/(8C) +

C

log n

ψn(βj)

ψn(βi)
exp

(
− c1 log n

C

)
≤ 1/ log n, (4.7)

if c1 and c0 are chosen to be large enough. Since βj−βj−1 � 1/ log n, we have N � log n. Bounding
(4.4) by (4.7) and summing over j < i, we see that

i−1∑
j=1

E
[
|f̂hβj (x)− f(x)|2ψn(βi)

−1
1(Ej)

]
. 1. (4.8)

Finally, (4.1), (4.3) and (4.8) together yield the theorem.
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5 Extras

1. If f ∈ Σ(βmax, L), then f̂∗ achieves the optimal rate without the logarithm.

2. [Chichignoud, Lederer, and Wainwright, 2016] “A Practical Scheme and Fast Algorithm to
Tune the Lasso With Optimality Guarantees” for an application to the Lasso

3. [Bellec, Lecué, and Tsybakov, 2016] for an application to achieving log(p/s) with the Lasso
instead of the Slope
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